

Eco Niwas Samhita - Karnataka Energy Conservation Building Code for Residential Building

Power Sector- A Snapshot

Source wise Energy Consumption

Source : Climate Works, Foundation, 2010

Bureau of Energy Efficiency, Ministry of Power, Government of India

4

Introduction to Eco Niwas Samhita (ENS)

BEE (BUREAU OF ENERGY EFFICIENCY)

Government of India

GIZ (Deutsche Gesellschaft für Internationale Zusammenarbeit)

Government of Germany

Need for ENS

With respect to BUILT-UP AREA, approximately 3 Billion sq-m of Residential Built-up area will be added by 2030 with an exponential land use increase from 24% to 60% by 2047.

ENERGY DEMAND increase is as indicated below

Eco Niwas Samhita (ENS) - Part 1

Eco Niwas Samhita - Part 1 is designed to define minimum Building Envelope design standards to improve Energy Efficiency in Residential Buildings

2. For adequate day light (WWR- Window to Wall area Ratio)

 For Adequate natural ventilation potential
 (WFR - Window to Floor Area Ratio)

3. Limit heat gains / heat loss (U Value - Thermal Transmittance, RETV-Residential Envelope Transmittance Value)

Salient Features of ENS

- □ Simple-to-apply format (Prescriptive Compliance Approach)
- Simple calculations based on inputs from the architectural design drawings of
- buildings.
- □ Will not require any simulation software.
- Code to be readily adopted in the building bye-laws.
- A compliance tool is also available on BEE website to aid in the calculations

and compliance check.

<u>http://</u> www.econiwas.com/

>

>

Benefits of ENS

Improve Thermal Comforts

Reduce Electricity Bills

Estimated Impact Of Implementing Eco Niwas Samhita

Minimum 20% energy saving as compared to a typical Building 125 billion KWH of electricity Saving 100 million tones of CO₂ equivalent abatement

Scope of ENS

The code is applicable to

(a)Residential Buildings with plot area ≥ 500m²

(b) Residential part of "Mixed Land-use building projects" built on plot area of \geq 500m².

Excluded from the code

Dormitories

Hotels

Lodging Rooms

 Non-insulated roof absorbs more heat and radiates inside the building; 90 EPI (approx.)
 Proper Insulating materials can reduced heat gain; 70 EPI (approx.)

1. Conventional Brick wall, roof and single glazed windows, traps heat ; 70 EPI (approx.)

2. Proper shading, glazing, Wall & Roof insulation reduces impact of heat ; 40 EPI (approx.)

Increases in cross-ventilation reduces dependency on Air conditioners & coolers, thereby reduces electricity bills

Bureau of Energy Efficiency, Ministry of Power, Government of India

Deutsche Gesellschaft für Internationale

usammenarbeit (GIZ) GmbH

Karnataka ENS Code

SCOPE: The Karnataka ENS code is applicable to Residential Buildings with plot area \geq 500m² and Residential part of "Mixed Land-use building projects" built on plot area of \geq 500m². APPLICABILITY: The Karnataka ENS

code is applicable to all 5 climatic zones (Composite, Hot & Dry, Warm & Humid, Temperate & Cold), that all districts fall under. Latitude below 23.5 ° N

Climate Map -Karnataka

Performance Standards for Building Envelope

Source: Eco Niwas Samhita 2018

S. I Openable Window W I tool Area Natio (WFR)

Window to floor area ratio is the ratio of Openable area to the carpet area of the dwelling Units.

Carpet Area Openable Area 8' WIDE CORRIDOR 8' WIDE CORRIDOR Windows, Ventilators, opening directly DRAWING DRAWING 16'6"X11 16'6"X11 to **I.BEDROOM** Total Internal M.BEDROOM 15'X11 • External air, Area of the • Open balcony, TOILET TOILET DINING 10'X16'1%" habitable space 9'X5' DINING 10'X16'1½" 7'6"X5' • Corridor, **Balconies** -BEDROOM BEDROOM Shaft 10'X10'9" 10'X10'9" Excluded KITCHEN KITCHEN **Doors opening** '4½"X10'9' directly into Open balcony 5' WIDE BALCONY WIDE BALCONY

Bureau of Energy Efficiency, Ministry of Power, Government of India

Deutsche Gesellschaft für Internationale

Zusammenarbeit (GIZ) GmbH

Minimum requirement of	f window-to-floor area Ratio	Openable Area Percentages	
Climate Zone	Minimum WFRop	(In case the exact Opena	able is not known)
Composite	12.50	Type of Window/Door/	Percentage
Hot-Dry	10.00	Ventilator	Openable Area
Warm-Humid	16.66	Casement	90 %
Temperate	12.50	Sliding (2 Panes)	50%
Cold	8.33	Sliding (3 Panes)	67%

3.2 Window to Wall Area Ratio (To arrive at Optimum VIT) WWR - Window to wall area ratio

$$WWR = \frac{A_{non-opaque}}{A_{envelope}}$$

* Note for WWR \leq 0.15 , VLT -
40%

WWR = Window to wait area ratio
Area (non-opaque) -
Total glass area in the opening .
Excluded - Opaque part of the total opening
size.
Area(Envelope) -
Total envelope area of all facades.
Included - opaque and non-opaque

Relation between WWR and Visual Light Transmittance

Window to Wall Ratio (WWR)	Minimum VLT
0-0.30	0.27
0.31-0.40	0.20
0.41-0.50	0.16
0.51-0.60	0.13
0.61-0.70	0.11

3.2 Window to Wall Area Ratio (To arrive at Optimum

From where can we obtain the VLT of the Glass ?

			•				
Colour / Performance	Thickness (mm)	Light Transmittance LT	Light Reflectance LR	Total Solar Radiant Heat Transmittance	Total Shading Coefficient	U Value (W/m²K)	R , Value (dB)
Clear	10	0.77	0.14	0.67	0.77	2.7	38
Clear	12	0.76	0.14	0.64	0.74	2.7	38
Clear	15	0.74	0.13	0.60	0.69	2.6	40
73/42	10	0.69	0.10	0.40	0.46	1.4	38
70/39	10	0.67	0.12	0.37	0.43	1.3	38
69/37	10	0.66	0.11	0.35	0.40	1.3	38
62/29	10	0.58	0.09	0.29	0.33	1.3	38
50/27	10	0.48	0.10	0.26	0.30	1.3	38
30/17	10	0.29	0.24	0.19	0.22	1.3	38

VLT of a Glass can be obtained from the Glass cut sheet available with any Glass manufacturer

BUILDING PHYSICS PRINCIPLES TO UNDERSTAND THERMAL TRANSMITTANCE

- Modes of Heat Transfer
- > Opaque Envelope (Walls & Roof)
 - Thermal Conductivity K Value
 - Thermal Resistance R Value
 - Thermal Transmittance U Value
- Non Opaque Envelope (Glazing & Windows)
 - Thermal Transmittance U Value
 - □ Solar Heat Gain Coefficient (SHGC)
 - □ Visible Light Transmittance (VLT)

Residential Envelope Transmittance Value (RETV) - Walls (Opaque + Non - Opaque Elements)

HEAT TRANSFER MEDIUMS

70.F

Conduction

RadiationHeat transfer occurring, whenever there isRadiationa temperature gradient/ differenceStatebetween two surfaces through directStatecontact.

Convection

Convection heat transfer takes place between a surface and a moving fluid/air medium, when they are at different temperatures

Radiation

Radiation heat transfer does not require any medium for transmission and transfer of heat is through electro magnetic waves

K-VALUE, R-VALUE - THERMAL RESISTANCE

K-value (k) -

The rate at which heat passes through a specified material, expressed as the amount of heat that flows per unit time through a unit area with a temperature gradient of one degree per unit distance. (W/m K)

R-value -

Thermal resistance is a heat property and a measurement of a temperature difference by which an object or material resists a heat flow, through unit thickness of material. (m²K/W)

R -Value = Thickness of material (t)/ K

3.3 Thermal Transmittance - U roof

Thermal transmittance of roof shall comply with U_{roof} value - 1.2 W/ m².k

Source: Eco niwas Samhita -2018, Annexúre -

3.3 Thermal Transmittance - U roof

Total thermal Resistance - $R_t = R_{si} + R_{se} + R1 + R2 + R3....$ = 0.17+0.04+1.917 = 2.127 m².K/ W

Total Thermal Transmittance (Roof)-U _{roof} =1/RT = 0.47 W/m².K

Material Layer	Thickness,(t)	Thermal Conductivity- k (W/m.K)	Thermal Resistance , R=t/k(m².K/w)
China mosaic tile	0.007	1.500	0.005
Concrete (laid to slope)	0.050	1.740	0.029
Polyurethane foam (PUF)	0.040	0.023	1.739
Cement screed	0.020	0.720	0.028
RCC slab	0.150	1.580	0.095
Internal plaster	0.015	0.720	0.021
Sum of all material thermal resistance			1.917

Source: Eco niwas Samhita -2018, Annexure -

3.4 Residential Envelope Transmittance Value (RETV)

The net heat gain rate through building Envelope

$$RETV = \frac{1}{A_{envelope}} \times \left[\begin{cases} a \times \sum_{i=1}^{n} \left(A_{opaque_i} \times U_{opaque_i} \times \omega_i \right) \\ + \left\{ b \times \sum_{i=1}^{n} \left(A_{non-opaque_i} \times U_{non-opaque_i} \times \omega_i \right) \\ + \left\{ c \times \sum_{i=1}^{n} \left(A_{non-opaque_i} \times SHGC_{eq_i} \times \omega_i \right) \right\} \end{cases} \right]$$

RETV accounts for > heat conduction
through opaque and nonopaque building envelope
components and does not
include ROOFS.
> Solar radiation through

non-opaque building envelope components

SHGC -Solar heat gain coefficient

 A_{opaque} , $A_{non-opaque}$ - area of opaque and non-opaque areas in the building envelope W_i - Orientation Factor

U_{opaque}, U_{non-opaque} - Thermal transmittance of opaque and non-opaque building envelope components.

a,b,c - Coefficients for different climatic zones

A_{envelope} - Envelope area of dwelling units, **except roof area**.

Solar Radiation

through non-

surfaces. Conduction

opaque

through

opaque

surfaces

opaque

surfaces

Conduction

through non-

Bureau of Energy Efficiency, Ministry of Power, Government of India

Deutsche Gesellschaft für Internationale

Zusammenarbeit (GIZ) GmbH

3.4 U- Value - Thermal Transmittance - Wall

U-value - Rate of transfer of heat through a structure (which can be a single material or an assembly), divided by the difference in temperature across that structure. (W/m²K)

3.4 Types of wall and their U-value

150 mm RCC (No plaster) U Value - 3.77 W/m²K

200 mm Solid Concrete Block with 15 mm plaster on both sides U Value- 2.8 W/m²K

230 mm Brick with 15 mm plaster on both sides U Value 1.72 - 2.24 W/m²K

200 mm Autoclaved Aerated Concrete (AAC) with 15 mm plaster on both side U Value- 0.77 W/m²K

300 mm Autoclaved Aerated Concrete (AAC) with 15 mm plaster on both sides U Value - 0.54 W/ m²K

3.4 U- Value - Thermal Transmittance - Non-

Onaque

Solar heat gain coefficient is the measure of solar heat -

- Absorbed
- Transmitted

Lower SHGC \propto lesser Heat Transfer

Solar Radiation is subsequently released inward through conduction, convection and radiation.

INSIDE

3.4 Projection factor (PF)

Projection Factor (PF) is the ratio of the horizontal depth of the external shading projection (H overhang) to the bottom of the farthest point of the external shading projection (V overhang), in consistent units.

3.4 Equivalent SHGC

SHGC _{unshaded} = Transmission + Secondary heat gain

Incident Solar radiation

External Shading (overhang, side fins)cut the solar radiation External Shading Factor ($\text{ESF}_{\text{total}} \leq 1$) accounts the impact of shading.

SHGC_{eq} = SHGC _{unshaded} X ESF_{total}

SHGC_{eq -} Equivalent SHGC

SHGC _{unshaded} - Unshaded SHGC

ESF_{total -} Total External Shading Factor

3.4 Equivalent SHGC

	External Shading Factor for Overhang (ESF _{overhang}) for LAT < 23.5°N							
Orientation	North	North-east	East	South-east	South	South-west	West	North-west
PF _{overhang}	(337.6°–22.5°)	(22.6°–67.5°)	(67.6°–112.5°)	(112.6°–157.5°)	(157.6°–202.5°)	(202.6°–247.5°)	(247.6°–292.5°)	(292.6°–337.5°)
<0.10	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000
0.10-0.19	0.931	0.924	0.922	0.910	0.896	0.910	0.922	0.924
0.20-0.29	0.888	0.864	0.855	0.834	0.816	0.834	0.854	0.864
0.30-0.39	0.860	0.818	0.797	0.771	0.754	0.771	0.796	0.818
0.40-0.49	0.838	0.782	0.747	0.721	0.708	0.720	0.746	0.782
0.50-0.59	0.820	0.755	0.705	0.682	0.675	0.681	0.705	0.755
0.60-0.69	0.806	0.734	0.670	0.651	0.653	0.651	0.670	0.734
0.70-0.79	0.793	0.718	0.641	0.628	0.638	0.627	0.640	0.717
0.80-0.89	0.783	0.706	0.616	0.610	0.628	0.609	0.615	0.705
0.90-0.99	0.775	0.696	0.596	0.596	0.621	0.596	0.595	0.695
≥1	0.768	0.688	0.579	0.585	0.616	0.585	0.578	0.688

SHGC_{eq} = SHGC _{unshaded} X ESF_{total}

= 0.6 * 0.820

= 0.492

Source: Eco Niwas Samhita -2018, Table 11, Annexure - 7

Bureau of Energy Efficiency, Ministry of Power, Government of India

32

3.4 Orientation factor (ω)

The orientation factor (ω) is a measure of the amount of direct and diffused solar radiation that is received on the vertical surface in a specific orientation

	Orientation factor (ω)	
Orientation	Latitudes <23.5°N	
North (337.6°–22.5°)	0.659	
North-east (22.6°–67.5°)	0.906	
East (67.6°–112.5°)	1.155	
South-east (112.6°-157.5°)	1.125	
South (157.6°–202.5°)	0.966	
South-west (202.6°-247.5°)	1.124	
West (247.6°-292.5°)	1.156	
North-west (292.6°-337.5°)	0.908	

The building is oriented at 45 $^\circ$ N, then the corresponding Orientation factor = 0.906

TABLE 3 Coefficients (a, b, and c) for RETV formula

Climate zone	а	b	c
Composite	6.06	1.85	68.99
Hot-Dry	6.06	1.85	68.99
Warm-Humid	5.15	1.31	65.21
Temperate	3.38	0.37	63.69
Cold	Not applicable (Refer Section 3.5)		

RETV for the building envelope (except roof) for four climate zones, namely, Composite Climate, Hot-Dry Climate, Warm-Humid Climate and Temperate

Climate shall comply with the maximum RETV of 15 W/m²

3.4 KETV Case - T; Belagavi, Karnataka

(Composite)

Case 1	External wall	Roof Construction	Glazing	Window to wall Ratio	
		230mm thick Solid Burnt Clay Brick	150 mm thick RCC slab + 50mm thick EPS RETV - 14.92	50 mm Steel Frame; Single glazed Unit U Value = 5.7 W/m2k, SHGC = 0.56, VLT=0.51 2 W/m ² .K	22.55%

3.4 KETV Case - Z; Belagavi, Karnataka

(Composite)

Case 2	External wall	Roof Construction	Glazing	Window to wall Ratio
	200mm thick AAC Block wall	150 mm thick RCC slab + 50mm thick EPS	50 mm Steel Frame; Single glazed Unit U Value = 5.7 W/m2k, SHGC = 0.56, VLT=0.51	22.55%
		RETV - 9.71	W/m².K	

3.4 KEIV Case - 3; Belagavi, Karnataka

(Composite)

Case 3	External wall	Roof Construction	Glazing	Window to wall Ratio	
		200mm thick AAC Block wall	150 mm thick RCC slab + 50mm thick EPS	Double glazed Unit -Asahi LC 54/37	22.55%
	DOUBLE GLAZED WINDOW GLASS AIR SPACE SPACER DESICCANT SEAL			U Value = 1.64 W/m2k, SHGC = 0.36, VLT=0.52	
			RETV - 6.62	W/m ² .K	

3.4 KEIV Case - 4; belagavi, Karnataka

(Composite)

Case 4	External wall	Roof Construction	Glazing	Window to wall Ratio	
		200mm thick AAC wall, 50 mm EPS, high SRI paint	150 mm thick RCC slab + 50mm thick EPS	Double glazed Unit -Asahi LC 54/37	22.55%
	DOUBLE GLAZED WINDOW GLASS AIR SPACE PESICCANT SEAL			U Value = 1.64 W/m2k, SHGC = 0.36, VLT=0.52	
		RETV - 5.13 W/m ² .K			

3.5 Thermal Transmittance - Wall (Except roof) for Cold Climate (U envelope, cold)

➤The thermal transmittance of the building envelope (except roof) for cold climate shall comply with the maximum of 1.8 w/M²K

Case Study Analysis

Project Description and Details

Building Type	High Rise Residential
Location	Bengaluru
Climate Condition	Temperate
Residential Segment	Luxury Segment Project
Site Area	14,999 m ²
Total Built-up Area	35,525 m ²
Total No of Residential Units	214
Type of Units	3 BHK, 2 BHK
Orientation of Building	North with tilt of 5°

Project Description and Details

		Total Blocks	5 Blocks (A-E)
		3 BHK	40 units (each block)
		Floor area (3 BHK)	70.7 to 98.5 sqm
		2 BHK	3 units (each block)
		Floor area (2 BHK)	92.4 to 98.5 sqm
<u>3 BHK - Block - A</u>	<u>Z RHK - RIOCK -</u> <u>B</u>	Other Amenities	Gymnasium, Indoor Games, Swimming Pool, Badminton Court

Envelope Type	Construction Configuration		
	External Cement Mortar (15mm) + Concrete Wall (200mm) + Internal		
wall	Cement Mortar (12mm)		
Deef	SRI Paint + Internal Cement Mortar (15mm) + BBC (150mm) +		
ROOT	Expanded Poly Styrene (EPS) (50mm) + RCC Slab (200mm)		
Fenestration & Glazing	UPVC frame SGU with 6mm clear glass, SHGC = 0.84, VLT = 0.82		

Upenalte window to Floor Area Katio (WFK_{op}) - 3

DLI/

			BLOCK	C (3-BHK	Unit)			
	Floor Area			Floor Area Openable Window/Door Area			ea	
Area	Width (m)	Lengt h (m)	Area (m2)	Туре	Qty	Width (m)	Length (m)	Area (m2)
Bedroom-1	3.35	3.8	12.73	SD	1	0.925	1.8	1.665
Bedroom-2	3.15	3.8	11.97	W/W1	1	0.625	1.374	0.86
Bedroom-3	3.15	3.8	11.97	W/W2	1	0.625	1.374	0.86
Living/ Dining Room/ Foyer	3.45	6.4	22.08	SD	1	0.925	1.8	1.66
Kitchen	2.8	2.8	7.84	KW	1	0.6	0.78	0.47
				KD	1	0.59	1.8	1.1
Bathroom-1	2.6	1.7	4.42	V	1	0.9	0.6	0.54
Bathroom-2	1.75	2.8	4.9	V	1	0.9	0.6	0.54

 $WFR_{op} = 10.9$

Upenable window to Floor Area Katio (WFK_{op}) -

DLI/

BLOCK C (2-BHK Unit)								
	F	Openable Window/Door Area				Area		
Area	Width (m)	Lengt h (m)	Area (m2)	Туре	Qty	Width (m)	Length (m)	Area (m2)
Bedroom-1	3.35	3.7	12.395	W/ W1	1	0.925	1.8	1.665
Bedroom-2	3.6	3.35	12.06	W/ W2	1	0.925	1.8	1.665
Living/ Dining Room	7.2	3.45	24.975	SD	1	0.925	1.8	1.66
Kitchen	2.6	3.45	8.97	KW	1	0.6	0.78	0.468
				KD	1	0.59	1.8	1.062
Bathroom-1	1.6	2.5	4	v	1	0.9	0.6	0.54
Bathroom-2	1.6	2.5	4	V	1	0.9	0.6	0.54

 $WFR_{op} = 11.4$

Bureau of Energy Efficiency, Ministry of Power, Government of India

44

Deutsche Gesellschaft für Internationale

Zusammenarbeit (GIZ) GmbH

Openable Window to Floor Area Ratio (WFR_{op})

Climate Zone	Minimum WFRop (%)
Composite	12.5
Hot-Dry	10
Warm-Humid	16.66
Temperate	12.5
Cold	8.33
3 BHK	Bengaluru is in the temperate climate.
$WFRop = A_{openable} = \frac{8.3}{A_{carpet}} = \frac{75.91}{75.91}$	As per Table, the minimum WFRop for this climate is 12.5%.
2 BHK	Thus, this project does not complies with
$WFRop = A_{openable} = 7.59 = 11.4\%$ A _{carpet} 66.4	this requirement.

Window to Wall Area Ratio (To arrive at Optimum VLT)

Wall area calculations

	Areas				
Orientation	Opaque Wall Area (m²)	Non-Opaque Area (m²)	Total Envelope Area (m²)		
North	2842.82	1578.88	4421.7		
South	3028.92	1393.38	4422.3	0.20	
East	922.26	137.34	1059.6	0.30	
West	678.17	107.68	785.85		

Building Envelope Details of the Project

WWR to arrive at optimum VLT - As per

	velope becans of the		<u>Code</u>	
Envelope	Construction Configuration Configuration		Window to Wall Ratio (WWR)	Minimum VLT
Type Config	Configuration	m². K)	0-0.30	0.27
U Fenestration & Glazing 0	UPVC frame SGU(Single Glazed Unit) with 6mm clear glass, SHGC = 0.84, VLT = 0.82		0.31-0.40	0.20
		5.68	0.41-0.50	0.16
			0.51-0.60	0.13
			0.61-0.70	0.11

In this project and Single Glazed Unit with UPVC frame having a VLT of 0.82 is used for construction.

Therefore, it is seen that the project is meeting the compliance requirement for VLT.

Thermal Transmittance - U roof

Roof Construction Details of the Project

Building Envelope Type	Construction Configuration	Thickness (m)	Thermal Conductivity, "K" (W/m. K)	Thermal Resistance Total, "R"(m².K/W)	Thermal Transmittance, "U" (W/m². K)
	Internal Cement Mortar	0.012	0.719		
	RCC Slab	0.2	1.58	0.764	
	Brick Bat Coba	0.15	0.62	(including	
Roof	Expanded Poly Styrene Insulation (EPS)	0.05	0.35	Rs _i = 0.17 m². K/W and	1.31
	External Cement Mortar	0.015	0.719	$Rs_e = 0.04 \text{ m}^2. \text{ K/W}$	
	SRI Paint	0.0005	0.09		

Thermal transmittance of roof shall comply with U_{roof} value - 1.2 W/

		<u> </u>	
	Roof		The project has U-value of
	Composite climate, hot-Dry climate, warm-humid climate, and temperate climate	Cold Climate	1.31 W/m². K. Hence the building's roof configuration does not complies
Rsi(m2.K/	0.17	0.10	with this requirement.
Source-Adapte CRoc(mation B	d from Bureau of Energy Efficiency (BEE), 2009. En Wildiag Code User Guide, New Delhi	ergy 0.04	
W)			wer, Government of India

Residential Envelope Transmittance Value

	Orientation factor (ω)
Orientation	Latitudes <23.5°N
North (337.6°-22.5°)	0.659
North-east (22.6°-67.5°)	0.906
East (67.6°–112.5°)	1.155
South-east (112.6°-157.5°)	1.125
South (157.6°–202.5°)	0.966
South-west (202.6°-247.5°)	1.124
West (247.6°-292.5°)	1.156
North-west (292.6°-337.5°)	0.908

Climate Co-efficient	a	b	С
Temperate	3.38	0.37	63.69

Orientation Factor for Building oriented at 5°N;					
Latitude < 23.5°N					
Ν	S	Е	W		
0.659 0.966 1.155 1.156					

Wall and Glazing Details of the Project

Envelope Type	Construction Configuration	Thickness (m)	Thermal Conductivity, "K" (W/m. K)	Thermal Resistance Total, "R"(m².K/W)	Thermal Transmittance, "U" (W/m². K)
Wall	Internal Cement Mortar	0.015	0.719		2.06
	Concrete wall	0.2	0.73	0.49	
	Exterior Cement Mortar	0.015	0.719		
Glazing	Single Glazed Unit with UPVC Frame; SHGC = 0.84	0.006			5.68

Residential Envelope Transmittance Value

Wall														
		Propert	y I			Gross Area (m ²)				Net Area (m²)				
Envelop	e Uv	value (W/m². K)		North	East		South West		t	North		East	South	west
Concret	te	2 06 4421 70 1		10	059 60 4422 30		785 8	25	2842.82		077 76	3028 0	678 17	
Wall		2.00 4421.70		10	J7.00 4	422.30	705.0	763.65		2042.02		JUZ0.7Z	0/0.1/	
Glazing														
			SHG	C EQ				Win	ndow Are	a (m²)		KEIV (W/M ²)		
SHGC	Туре	North	East	South	West	U value (W/m². K)	North	East	South	West	Total	Standard		Achieved
	W/W1	0.72	0.74 0.70 0.74		461.25	67.50	380.25	18.00	927.00					
	W2	0.72	0.74	0.70	0.74		17.55	0.00	20.40	28.80	66.75			
0.84	KW	0.54	0.00	0.43	0.43	5.70	21.06	0.00	23.40	9.36	53.82	15.	00	13.04
	SD	0.55	0.43	0.46	0.00		905.52	46.20	803.88	0.00	1755.60			
	SDs	0.50	0.00	0.39	0.00	-	26.40	0.00	33.00	0.00	59.40			

The above table describes the suitable values considered for calculating thermal transmittance based on the orientation of the building

The project has **RETV value as 13.04 W/m**². Hence the building's RETV configuration **complies with this requirement.**

Code Compliance Report

Compliance Parameters	Achieved	Requirement	Compliance Status
Openable Window to Floor Area	8.95 % to 10.09 %	> 12.5 %	NOT COMPLIANT
Ratio (WFR _{op})			
Visible Light Transmittance (VLT)	0.87	≥ 0.27	COMPLIANT
Thermal Transmittance of Roof (U _{roof})	1.31	≤ 1.2 W/m². K	NOT COMPLIANT
Residential Envelope Transmittance Value (RETV)	13.04	≤ 15 W/m²	COMPLIANT

There is scope for improvement in the design aspects to glazing components of the building.

Reducing these values will limit the amount of heat gained inside the dwelling units and will provide thermal comfort to occupants at a lower cost of energy.

Eco-Niwas Samhita Compliance Approach Tool

Java based ENS compliance check tool has been developed to check compliance for residential project.

Eco-Niwas Samhita: Compliance Check Tool	the second se	state is also it. Name in the state of the	
			Ministry of Power Government of India
File Help			ECBC-R Compliance
▼ Residential project-1 Check Compliance (Residential project-1)			HELP !
	Project Name	Residential project-1	Climate zones of India
Building A Check Compliance (Building A) Wall	State	Maharashtra 👻	India can be broadly categorised into 5 climatic zones, with the following characteristics:
Window			Climate Zone Mean monthly max. temp. Mean monthly relative humidity
Ventilator	City	Mumbai	Hot dry Above 30°C Below 55%
Door			Warm humid Above 30°C Above 55%
Roof			Above 25°C Above 75%
	Climate	WARM & HUMID	Temperate 25-30°C Below 75%
			Cold Below 25°C All values
	Latitude	< 23.5° N	Composite Does not have a predominant season for more than six months
Vpload Siteplan	Total no. of Residential Blocks Block Type for Compliance Check	2 No. of Blocks Add Block Project Relocate	
	Block Type for Compliance Check	Number of Blocks	Same & Same
	Building A		
	<c< td=""><td>lock 2</td><td>Building block type for compliance check</td></c<>	lock 2	Building block type for compliance check

Available on Bureau of Energy Efficiency's website for download. Link - https://beeindia.gov.in/content/ecbc-residential

Project related details are entered in the tool for compliance check

Climate data after entering the project location details

Bureau of Energy Efficiency, Ministry of Power, Government of India

53

Details of various building components will be added for Compliance check- Architectural drawings(plans, sections and elevations)

1 Eco-Niwas Samhita: Compliance C ck Tool							- 🗆 X
							Ministry of Power Government of India
File Help							ECBC-R Compliance
Triar Project Check Compliance (Trial Project)	Dwelling U	nit Details :	استاد				HELP !
BLOCK-A Check Compliance (BLOCK-A)	- -	- 11 1 I 11	N	0	011 (Dwelling unit and type
Window	Type of Dwe	elling Unit	No. of Units	Carpet Area/	DU (m²)		Carpet area
Ventilator						Add	
Door	S.No.	Type of DU	No. of Units	Carpet Area/	. Total Area (m²)	â	
Wall	1	2-BHK	56	65.0	3640.0	•	
Roof							
Upload Siteplan							
						TU	
						~	
						>	
	f +					_	

Details of the blocks are submitted and can be seen here

Construction material details are entered in the tool. Window details are shown here for

Bureau of Energy Efficiency, Ministry of Power, Government of India

55

Implemented by

Supported by

Thank You

Knowledge Partner

